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Abstract. In this paper, the canonical quantization of singular Lagrangian defined in a finite volume is
discussed by studying a 1+1 dimensional free Schrödinger field. We take the boundary conditions (BCs) as
Dirac constraints, and show that those BCs as well as the intrinsic constraints (which are introduced by the
singularities of Lagrangian) form the second class constraints. The quantization is performed canonically.

PACS. 11.25-W, 04.60.D, 11.10.E

1 Introduction

It is well known that to study a general field theory in a
finite volume, one should take not only the equations of
motion but also the boundary conditions (BCs) into con-
sideration. BCs are usually the combinations of the field
variables and their various derivatives (including the time
derivatives, sometimes [1–4]) which are valid only on the
boundaries and are expected to be held all the times. In the
Hamiltonian formulism, those BCs are the combinations of
the canonical variables in phase space, i.e., the fields and
their conjugate momenta (or their spatial derivatives). In
Dirac’s language, these BCs are the constraints in the phase
space. However, such constraints have the different ori-
gins compared to the traditional Dirac’ context where the
primary constraints are introduced by the singularities of
Lagrangian and the secondary constraints are the require-
ments of the stability of the primary ones. Due to BCs, one
can not quantize the system consistently in the whole space
because on the boundaries those BCs are inconsistent with
the usual canonical commutation relations generally [1–4].

This problem has been thoroughly studied in [1], there,
the authors take the BCs as the Dirac’s primary constraints
and the Dirac procedure is applied to two models. However,
their models are so simple that there are not intrinsic con-
straints. In this paper, we shall generalize the discussion
in [1] to a more general case, in which both the intrin-
sic constraints and BCs are contained. We shall analyse a
non-relativistic field, Schrödinger field (which is described
by a singular Lagrangian) in a finite volume. So, from the
point of view of origination, this model has two kinds of
different constraints, one kind is due to the singularities
of Lagrangian, the other kind is BCs. As a example, we
study the Neumann BCs intensively, we show that those
two kinds of constraints form second class constraint. The
canonical quantization is performed.
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The organization of this paper is as follows: in Sect. 2, we
shall quantize the model canonically in an infinite volume.
Then in Sect. 3, we analyse the model in a finite volume.
The BCs are considered. Following the [1] we take the BCs
as Dirac constraints, and the canonical quantization are
given there. Sect. 4 are devoted some further discussions
and remarks.

2 Schrödinger field in an infinite volume

We start from Schrödinger field in an infinite volume. For
the sake of simplicity, we confine ourself to 1+1 dimension.
The generalization to higher dimension is straightforward.
The basic field variables are ψ(x, t) and their Hermitian
conjugate ψ†(x, t). The action is (in order to have a Hermi-
tian total Hamiltonian, we would like to write the action
in a symmetry form)

S =
∫ t2

t1

dtL

=
1
2

∫ t2

t1

dt
∫ +∞

−∞
dx iψ†(x, t)∂tψ(x, t)

− i∂tψ
†(x, t)ψ(x, t) − ∂xψ

†(x, t)∂xψ(x, t) , (1)

where ∂t and ∂x denote ∂
∂t and ∂

∂x respectively, L is the La-
grangian

L =
1
2

∫ +∞

−∞
dx iψ†(x, t)∂tψ(x, t)

− i∂tψ
†(x, t)ψ(x, t) − ∂xψ

†(x, t)∂xψ(x, t) , (2)

we set m = � = 1. The variation of the action with respect
to ψ(x, t) and ψ†(x, t) leads to

δS =
1
2

∫ t2

t1

dt
∫ +∞

−∞
dx δψ†(x, t)
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× [ 2i∂tψ(x, t) + ∂x∂xψ(x, t)]

+
[−2i∂tψ

†(x, t) + ∂x∂xψ
†(x, t)

]
δψ(x, t)

− 1
2

∫ t2

t1

dt (3)

× [(δψ†(x, t)∂xψ(x, t)) + (∂xψ
†(x, t)δψ(x, t))

]+∞
−∞

+
1
2

∫ +∞

−∞
dx

[
iψ†(x, t)δψ(x, t) − iδψ†ψ(x, t)

]∣∣∣∣
t2

t1

.

For any arbitrary δψ and δψ†(x, t), the variation of the
action vanishes if the four terms in the above equation
vanish simultaneously. The vanishing of the first and the
second terms gives the equations of motion, namely, the
free Schrödinger equation and its Hermitian conjugation,

i∂tψ(x, t) +
1
2
∂x∂xψ(x, t) = 0,

−i∂tψ
†(x, t) +

1
2
∂x∂xψ

†(x, t) = 0 ,
(4)

the last term leads to the initial conditions. For the third
term in (3), it is zero because the variables ψ(x, t), ψ†(x, t)
trend to vanish at spatial infinity.

This model can be quantized canonically. We can resort
to Dirac’s procedure to quantize it. In doing so, we should
turn into phase space which is spanned by variables ψ(x, t),
ψ†(x, t) and their canonical momenta Π(x, t), Π†(x, t),
defined as

Π(x, t) =
δS

δψ̇(x, t)
=
i

2
ψ†(x, t),

Π†(x, t) =
δS

δψ̇†(x, t)
= − i

2
ψ(x, t) ,

(5)

where ’dot’means derivativewith respect to time.The basic
Poisson brackets among those canonical variables are

{ψ(x, t) , Π(x′, t)} = δ(x− x′) ,{
ψ†(x, t) , Π†(x′, t)

}
= δ(x− x′) .

(6)

Others are vanishing. From the definition of canonical mo-
menta, we can see that there are two primary constraints
in Dirac’s langauge appear,

φ
(0)
1 (x, t) = Π(x, t) − i

2
ψ†(x, t) ≈ 0 ,

φ
(0)
2 (x, t) = Π†(x, t) +

i

2
ψ(x, t) ≈ 0 ,

(7)

inwhich the symbol ’≈’means equivalence on the constraint
hypersurface. The canonical Hamiltonian can be obtained
by the Legendre transformation,

HC

[
ψ(x, t), ψ†(x, t), Π(x, t), Π†(x, t)

]
=
∫ +∞

−∞
dx
[
Π(x, t)ψ̇(x, t) +Π†(x, t)ψ̇†(x, t)

]

− L
[
ψ(x, t), ψ†(x, t), ψ̇(x, t), ψ̇†(x, t)

]
. (8)

Substitute (2) and (5) into the above equation, the canon-
ical Hamiltonian can be obtained

HC

[
ψ(x, t), ψ†(x, t), Π(x, t), Π†(x, t)

]
=

1
2

∫ +∞

−∞
dx∂xψ

†(x, t)∂xψ(x, t) . (9)

It can be shown that the dynamics of any functions F in
phase space are determined by

Ḟ ≈ {F, HT } (10)

where HT is the total Hamiltonian,

HT = HC +
∫ +∞

−∞
dxλiφ

(0)
i (x, t) , i = 1, 2 . (11)

λi are the Lagrange multipliers. According to Dirac’s pro-
cedure, one should further check the consistency conditions
of the primary constraints to determine whether there are
secondary constraints.

φ̇
(0)
i (x, t) ≈

{
φ

(0)
i (x, t), HT

}
≈ 0 . (12)

It is easy to find that there are no secondary constraints
in this model, the consistency conditions only determined
the Lagrangian multipliers λi. Also, it is easy to compute
the matrix of mutual Poisson brackets of primary con-
straints (7), Cij ,

Cij =
{
φ

(0)
i (x, t), φ(0)

j (x′, t)
}
, (13)

it is

C =
(

0 −i
i 0

)
δ(x− x′) . (14)

The inverse of matrix C, i.e., C−1, is defined as∫ +∞

−∞
dyCij′(x, y, t)C−1

j′j (x′, y, t) = δijδ(x− x′) , (15)

it is

C−1 =
(

0 −i
i 0

)
δ(x− x′) . (16)

The dynamical properties of a system with second class
constraints are determined by Dirac brackets

{A(x, t), B(x′, t)}IDB

= {A(x, t), B(x′, t)}

−
∫ +∞

−∞
dydz (17)

× {A(x, t), θi(y, t)}C−1
ij (y, z) {θj(z, t), B(x′, t)}

(the reason why we label dirac brackets as IDB instead of
DB will be explained in the next section) where θi(x, t)
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stand for all the second class constraints, in the present
model, they are nothing but φ(0)

1 (x, t) and φ(0)
2 (x, t).

Now we are ready to calculate Dirac brackets among
all the canonical variables, we only list the results:{

ψ(x, t), ψ†(x′, t)
}

IDB = −iδ(x− x′) (18)

{ψ(x, t), Π(x′, t)}IDB =
1
2
δ(x− x′) . (19)

Others are vanishing.
In fact, (18) can be directly read from the action accord-

ing to Faddeev-Jackiw method [6]. Because the action (1)
is in the first-order form, i.e.,

S ∼
∫

dt
∫

dx ai(ξ)ξ̇i −H(ξ) ,

where ξi stand for all the symplectic variables ξi =
(ψ(x, t), ψ†(x, t)), ai(ξ) are the corresponding canonical
one-form ai(ξ) = ( i

2ψ
†(x, t),− i

2ψ(x, t)). The canonical
commutations can be read directly from the inverse of
the matrix

fij =
∂aj(ξ)
∂ξi

− ∂ai(ξ)
∂ξj

,

provided the inverse of fij exists. It is easy to compute

fij =
(

0 −i
i 0

)
δ(x−x′), and the inverse of f do exist, f−1

ij =(
0 −i
i 0

)
δ(x−x′)The commutation relation betweenψ(x, t)

and ψ†(x, t) can be read directly. They are in accordant
with the results of (18).

The quantization procedure is complete once we take
the following substitution:

{ , }IDB → 1
i
[ , ] ,

ψ → ψ̂ , ψ† → ψ̂† , Π → Π̂ , Π† → Π̂† .
(20)

3 Schrödinger field in a finite volume

In this section, we shall study the model which has been
studied in the previous section in a finite volume. The
action is

S =
∫ t2

t1

dtL

=
1
2

∫ t2

t1

dt
∫ π

0
dx iψ†(x, t)∂tψ(x, t)

− i∂tψ
†(x, t)ψ(x, t) − ∂xψ

†(x, t)∂xψ(x, t) . (21)

Compared with the action (1), the spital integral is confined
in a finite volume, i.e, x ∈ [0, π] The variation of the action
with respect to ψ(x, t) and ψ†(x, t) leads to

δS =
1
2

∫ t2

t1

dt
∫ π

0
dx δψ†(x, t) [ 2i∂tψ(x, t) + ∂x∂xψ(x, t)]

+
[−2i∂tψ

†(x, t) + ∂x∂xψ
†(x, t)

]
δψ(x, t)

− 1
2

∫ t2

t1

dt (22)

× [(δψ†(x, t)∂xψ(x, t)) + (∂xψ
†(x, t)δψ(x, t))

]π
0

+
1
2

∫ +∞

−∞
dx

[
iψ†(x, t)δψ(x, t) − iδψ†ψ(x, t)

]∣∣∣∣
t2

t1

.

For any arbitrary δψ and δψ†(x, t), the variation of the
action vanishes if the four terms in the above equation
vanish simultaneously. The vanishing of the first and the
second terms gives the free Schrödinger equation and its
Hermitian conjugation (4), and the last term leads to the
initial conditions. For the third term in (22) to vanish,
there are two choices which give two different boundary
conditions, say, Neumann boundary conditions

∂xψ(x, t)
∣∣
x=0,π

= 0, ∂xψ
†(x, t)

∣∣
x=0,π

= 0 , (23)

and Dirichlet ones

δψ(x, t)
∣∣
x=0,π

= 0, δψ†(x, t)
∣∣
x=0,π

= 0 . (24)

Due to the BCs (23) and (24), one can not impose (18)
on the whole space because they conflict with BCs on
the boundaries. So, the commutators (18) need further
modify, a careful treatment of BCs is needed. In the [1],
BCs are treated as Dirac primary constraints, it has been
proven that BCs form the second class constraints. and
Dirac’s procedure is applied there. In our model, things
are more complicated because this model contains both
intrinsic constraints (7) and BCS (23), (24). We shall follow
the same idea suggested in [1], take the BCs (23), (24) as
Dirac primary constraints. We only consider the Newmann
BCs (23), the Dirichlet ones can be treated in a similar way.

Nowbesides the constraints (7), there are two additional
constraints (23). It should be noted that although the BCs
are only valid on the boundaries, we can safely extend them
into the neighborhood of the boundaries, which means that
we can rewrite them in the form as

φ
(0)
3 =

∫ π

0
dx ∂xψ(x, t)δ(x−B) ≈ 0 ,

φ
(0)
4 =

∫ π

0
dx ∂xψ

†(x, t)δ(x−B) ≈ 0 ,
(25)

where B stands for boundaries, B = 0, π.
Once we take BCs (25) as primary constraints, the total

Hamiltonian is written as

HT = HC +
∫

dxλiφ
(0)
i , i = 1, 2, 3, 4 . (26)

It can be checked that the consistency conditions of the
primary constraints give no secondary constraints1. So the

1 According to [5], if det{φ
(0)
i , φ

(0)
j } �= 0, no secondary con-

straints should be introduced, because the consistency require-
ments φ̇

(0)
i ≈ 0 only determined the Lagrange multipliers.
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constraints φ(0)
i , i = 1, 2, 3, 4 form second class constraints.

The non-vanishing entries of the matrix of mutual Poisson
brackets among primary constraints (7), (25) C ′

ij are

C ′
12 = −C ′

21 = −iδ(x− x′) ,

C ′
13 = −C ′

31 =

C ′
24 = −C ′

42 = −
∫

dx′δ(x′ −B)∂x′δ(x− x′) .

(27)

It is awkward to compute the inverse of C ′ directly. In
order to simplify this problem, we prefer to do this in
two steps: first, we construct intermediate Dirac brackets
which correspond to the constraints φ(0)

1 ≈ 0, φ(0)
2 ≈ 0,

and then construct the final Dirac brackets. Consistency of
doing so is guaranteed by a known theorem [7]. In fact, the
intermediate Dirac brackets is nothing but (17), this is the
reasonwhywe labelDiracbrackets in theprevious section as
{ , }IDB instead of { , }DB. The intermediate Dirac
brackets of remaining constraints φ(0)

3 ≈ 0, φ(0)
4 ≈ 0 are{

φ
(0)
3 , φ

(0)
4

}
IDB

= −i
∫

dxdx′δ(x−B)δ(x′ −B)∂x∂x′δ(x− x′) . (28)

Using the equality

δ(x− x′) = lim
ε→0

1
ε
√
π

e−(x−x′)2/ε2 , (29)

the result of (28) can be obtained{
φ

(0)
3 , φ

(0)
4

}
IDB

= − 2i
ε3

√
π
. (30)

The matrix of intermediate Dirac brackets corresponding
to φ(0)

3 , φ
(0)
4 is

∆ =

(
0 − 2i

ε3
√

π
2i

ε3
√

π
0

)
. (31)

This matrix can be easily inverted, and the final expression
for the Dirac brackets is

{A(x, t), B(x′, t)}DB

= {A(x, t), B(x′, t)}IDB

− {A(x, t), θi}IDB∆
−1
ij {θj , B(x′, t)}IDB (32)

in which θi are φ(0)
3 and φ(0)

4 now. The canonical commu-
tators can be gotten from the above equation. We list our
final results{
ψ(x, t), ψ†(x′, t)

}
DB = −iδ(x− x′) (33)

+ i
ε3

√
π

2
∂xδ(x−B)∂x′δ(x′−B) ,

{ψ(x, t), Π(x′, t)}DB =
1
2
δ(x− x′) (34)

− ε3
√
π

2
∂xδ(x−B)∂x′δ(x′ −B) .

Others are vanishing. As argued in [1], the appearance of
the regularization parameter ε in the above equation seems
uncomfortable, but it is necessary to keep the two terms
on the right side to be of the same order.

Our final results (33,34) are equal to (18) and (19) if
we only consider the bulk, i.e., x, x′ ∈ (0, π), however, on
the boundaries, they are consistent with Newmann BCs.
Using equality (29) one can verify that 2

{
∂xψ(x, t), ψ†(x′, t)

}
DB

∣∣
x=B

= 0 . (35)

For this reason, we label the right hand side of (33), (34)
as −iδN (x− x′) and δN (x− x′) respectively, i.e,{

ψ(x, t), ψ†(x′, t)
}

DB = −iδN (x− x′) ,

{ψ(x, t), Π(x′, t)}DB =
1
2
δN (x− x′) .

(36)

The canonical quantization procedure is straightfor-
ward, and the only modification to (20) is that the the
subscript is DB instead of IDB.

4 Conclusions and remarks

In this paper, we show how to quantize a singular model
defined in a finite volume canonically by studying free
1 + 1 dimensional Schrödinger field. Compared with the
previous work [1], our model is more general because it
contains both intrinsic constraints and BCs. Following [1],
we take the BCs as Dirac primary constraints. It is shown
that BCs entangle with the intrinsic constraints and they
form the second class constraints. In order to quantize
this model canonically, the calculation of Dirac brackets
is inevitable. Based on a theorem [7], the calculation is
greatly simplified. We construct the intermediate Dirac
brackets { , }IDB firstly, then the final Dirac brackets
{ , }DB are calculated based on the intermediate ones.
Although our model is only confined in 1 + 1 dimension,
the generalization to higher space is quite straightforward.
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Appendix

In this appendix, we shall give the explicit calculations of
result (35). Consider equality (29), (35) is{

∂xψ(x, t), ψ†(x′, t)
}

DB

∣∣
x=B

2 The details of calculations will be given in the Appendix.
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= −i∂xδ(x− x′)
∣∣
x=B

+ i
ε3

√
π

2
∂2

xδ(x−B)
∣∣∣∣
x=B

∂x′δ(x′ −B)

= − i

ε
√
π
∂xe− (x−x′)2

ε2

∣∣∣∣
x=B

+
iε2

2
∂2

xe− (x−x′)2
ε2 ∂x′δ(x′ −B)

∣∣∣∣
x=B

=
−2i
ε
√
π

(x′ −B)e− (x−x′)2
ε2

∣∣∣∣
x=B

− i∂x

[
(x−B)e− (x−x′)2

ε2

]
x=B

∂x′δ(x′ −B)

= i∂x′δ(x′ −B) − i∂x′δ(x′ −B)

= 0 . (37)
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